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Abstract
By employing retarded Green functions, the spin-wave spectrum and the layer-
sublattice magnetization in Heisenberg ferrimagnetic three-layer superlattices
and three-layer systems are calculated within the framework of the linear spin-
wave approximation. The effects of the interlayer exchange constants and the
intralayer exchange constants on the magnetic properties of the two systems are
compared with those for the corresponding three-sublattice bulk ferrimagnets.
It is found that all the differences between the magnetic properties of these
systems originate from the differences between the exchange couplings in
the three dimensions of the systems. The quantum correlations, such as the
competition, cancellation, and transmission of the effects of the exchange
couplings, are important for the magnetic properties of the systems. The
asymmetry of the systems plays an important role in the zero-point quantum
fluctuations and, correspondingly, in the layer-sublattice magnetizations of the
layers.

1. Introduction

An exciting development in condensed matter physics and materials science is the
appearance of an artificial, periodic, layered material structure whose separation between
magnetic layers may be precisely controlled to be of the order of the intra-atomic
distances. Layered composite materials have become of great interest, since the magnetic
properties of these composite materials may be distinctly different from those of their
bulk counterparts [1, 2]. In particular, research has been focused on systems such as
magnetic superlattices [3–10] and multilayers [11–14]. Furthermore, one of the main
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directions that efforts to achieve an understanding of the mechanism of high-temperature
superconductivity have taken is that of investigating two-dimensional magnetic systems and
magnetic superlattices [15].

The so-called magnetic superlattices are defined as periodic layered structures with
alternating layers having different magnetic and/or electrical properties. Spin waves in the
superlattices and the multilayers have their own behaviours, which are different from those
in the bulk materials. They have been investigated by use of various quantum microscopic
theories [3–10]. By using a Green function method, the spin-wave excitation spectrum and
the sublattice magnetizations of a system consisting of ferromagnetic and antiferromagnetic
layers are calculated [3]. Herman et al [4] investigated the electronic and magnetic structure
of ultrathin cobalt–chromium superlattices by the Green function method. Lattice-matched
Co/Cr superlattice models were constructed for studying the exchange coupling and spin
distributions at atomically abrupt ferromagnetic/antiferromagnetic interfaces. A superlattice
consisting of alternating layers of two simple cubic Heisenberg ferromagnets was considered
by Albuquerque et al [5] who showed that the transfer matrix method leads to a compact
expression for the spin-wave dispersion relation of the magnetic superlattice. Most of the
systems investigated previously [3–9] are superlattices made up of two kinds of material or
two-layer systems. In our previous work [10], the spin-wave spectra of three- and four-layer
superlattices were studied analytically by developing a complicated diagonalization procedure
in terms of creation and annihilation operators. In our recent work [16], it was found that
the results in [10] are valid explicitly only in the trivial limit of k = 0 and approximately
at the limit of long wavelength. To our knowledge, previous studies have not dealt with
the effects of different layer spins on physical properties of the three-layer superlattices
with different interlayer and intralayer exchange constants. It is also difficult to study such
systems by using the analytical procedure developed previously [10], because of the complexity
of the problem.

In the recent work [16], the temperature dependences of the magnetization, internal
energy, and specific heat of the three-sublattice systems were studied, by employing retarded
Green functions, within the framework of the linear spin-wave approximation. In the
present paper, on the basis of a superlattice model developed in [10], we investigate the
magnetic properties of superlattices consisting of three different ferromagnetic materials,
with layers coupled either ferromagnetically or antiferromagnetically, by using the linear
spin-wave theory and the retarded Green function technique. The work is extended also
to study the corresponding three-layer system. Our intention is to study the effects of the
interlayer and intralayer exchange couplings on the magnetization, to explain the role of
competition among these coupling constants, and to compare the magnetic properties of
the three-layer superlattices, the corresponding three-layer systems, and the three-sublattice
bulk materials.

The structure of the paper is as follows: the model and Hamiltonian are described in
section 2. The results of numerical calculations and a discussion are given in section 3.
Section 4 gives a summary.

2. Model and Hamiltonian

We consider a Heisenberg model for a three-layer ferrimagnetic superlattice on a simple cubic
lattice. A schematic diagram of the model of the three-layer superlattices is given in figure 1(a).
A unit cell of the superlattice consists of three layers, 1, 2, and 3, where the spins are denoted by
Si (i = 1, 2, 3) for each layer. The nearest-neighbouring spins within each layer are coupled
ferromagnetically by the intralayer exchange couplings Ji (i = 1, 2, 3), respectively. The
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Figure 1. A schematic diagram of the models for (a) the three-layer superlattices and (b) the quasi-
two-dimensional three-layer systems. Only the spin configurations and the interlayer exchange
couplings are illustrated.

interlayer exchange couplings J12, J23, and J13 between the spins at the nearest-neighbouring
layers can be ferromagnetic or antiferromagnetic (see figure 1(a)). The superlattice structure
is stacked periodically along the x-direction, which is perpendicular to the layers (yz-planes),
following [10]. The Hamiltonian is

H = − 1
2

3∑
l=1

∑
ρ,δ‖

JlSl,ρSl,ρ+δ‖ −
3∑
l=1

∑
ρ

Jl,l+1Sl,ρSl+1,ρ (2.1)

where l is the number of layers and δ (or δ‖) represents that only the exchanges between
the nearest neighbours (or the nearest neighbours parallel to the yz-planes) are taken into
account. In the special case of J13 = 0, we can obtain a three-layer system, as shown in
figure 1(b). For the three-layer system, there is no periodic stacking along the x-direction;
only separate three-layer systems exist. For comparison, the reader could refer to our previous
work for a description of a three-sublattice bulk ferrimagnet where the lattice of sites is a
simple cubic one and the three interpenetrating sublattices, a, b, and c, are distributed among
these sites [10, 16].
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By use of the Holstein–Primakoff transform [17] and the linear spin-wave
approximation [18,19], introducing the spin-wave operators blk (b+

lk) (l = 1, 2, 3), we rewrite
equation (2.1) as follows:

H = −N
(
Zyz

2

3∑
l=1

JlS
2
l − J12S1S2 − J23S2S3 + J13S3S1

)

+ (J1S1Zyz − J12S2 + J13S3)
∑
k

b+
1kb1k

+ (J2S2Zyz − J12S1 − J23S3)
∑
k

b+
2kb2k

+ (J3S3Zyz − J23S2 + J13S1)
∑
k

b+
3kb3k

−
√
S1S2J12

∑
k

(γ−kxb1kb2k + γkxb
+
1kb

+
2k)

−
√
S2S3J23

∑
k

(γ−kxb+
2kb

+
3k + γkxb2kb3k)

−
√
S3S1J13

∑
k

(γ−kxb3kb
+
1k + γkxb

+
3kb1k)

− 1
2Zyz

3∑
l=1

JlSl
∑
k

γk‖(2blkb
+
lk − 1). (2.2)

Here Zyz = 4 represents the number of nearest neighbours in the yz-planes that are the
same; the corresponding parameter for along the x-direction is Zx = 1 for the present model.
Also,

γk‖ = 1

Zyz

∑
δ‖

eikδ‖ (2.3a)

γ±kx =
∑
δx

e±ikδx (2.3b)

and γkx �= γ−kx , because the model has no inversion symmetry with respect to each site in the
x-direction [16]. γkx and γ−kx are complex because δx has only one value (δx = 1), but γk‖ is
real because δ‖ can take four different values within the layer.

The direction of the spins of the initial state at the 1-layers and 3-layers is along to the
positive x-direction, but that of the spins in the 2-layers is the negative x-direction. Therefore,
the interlayer exchange constants J12, J23 are negative, but J13 is positive. All the intralayer
exchange constants J1, J2, and J3 are positive. There are N sites on each layer sublattice,
making a total of 3N sites for the system.

We first define the order-three-matrix retarded Green function:

G(k, ω) =
( 〈〈b1k, b

+
1k〉〉ω 〈〈b1k, b2k〉〉ω 〈〈b1k, b

+
3k〉〉ω

〈〈b+
2k, b

+
1k〉〉ω 〈〈b+

2k, b2k〉〉ω 〈〈b+
2k, b

+
3k〉〉ω

〈〈b3k, b
+
1k〉〉ω 〈〈b3k, b2k〉〉ω 〈〈b3k, b

+
3k〉〉ω

)
. (2.4)

Using the equation for the Green function:(
ω −H11 H12 H13

H21 ω −H22 H23

H31 H32 ω −H33

)
G(k, ω) =

( 1 0 0
0 −1 0
0 0 1

)
(2.5)
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we obtain the solution of the Green function:

G(k, ω) = 1

D(ω)

(
M11 −M21 M31

M12 −M22 M32

M13 −M23 M33

)
(2.6)

D(ω) =
∣∣∣∣∣
ω −H11 H12 H13

H21 ω −H22 H23

H31 H32 ω −H33

∣∣∣∣∣. (2.7)

Hereω represents the spectrum of the systems. The expressions for the retarded Green function
matrix elementsMij (i, j = 1, 2, 3) in equation (2.6) are same as those of the three-sublattice
ferrimagnet in [16] and the parameters Hij (i, j = 1, 2, 3) in equations (2.5) and (2.7) are
given as follows:

H11 = J1S1Zyz(1 − γk‖)− S2J12 + S3J13 (2.8a)

H12 =
√
S1S2J12γkx (2.8b)

H13 =
√
S3S1J13γ−kx (2.8c)

H21 = −
√
S1S2J12γ−kx (2.8d)

H22 = −(S2J2Zyz(1 − γk‖)− S1J12 − S3J23) (2.8e)

H23 = −
√
S2S3J23γkx (2.8f)

H31 =
√
S3S1J13γkx (2.8g)

H32 =
√
S3S2J23γ−kx (2.8h)

H33 = S3J3Zyz(1 − γk‖)− S2J23 + S1J13. (2.8i)

In the following, we shall try to compare the magnetic properties of the three-layer
superlattices, the three-layer systems, and also the three-sublattice bulk ferrimagnets.

3. Calculation and discussion

3.1. Spin-wave spectrum

Setting the determinant to zero, i.e., D(ω) = 0, we obtain numerical solutions for the spin-
wave spectra of the magnetic three-layer superlattices and three-layer systems. The results
are plotted in figures 2(a) and (b), for ω ∼ Kx and ω ∼ Ky , respectively, where Kx = 3akx ,
Ky = aky , and a is the lattice constant. From the two figures, it can be seen that the spin-wave
spectra for the three-layer superlattices or the three-layer systems have three branches—equal
in number to the layers in a unit cell. One spectrum ω3 (or ω′

3) represents the acoustic branch
since k → 0, ω → 0; the other two branches ω1 and ω2 (or ω′

1 and ω′
2) are optical. The

three energy spectra ω ∼ Kx of the superlattices are lower than the corresponding ones in
the ferrimagnetic three-sublattice bulk system [16]. This is ascribed to the antiferromagnetic
orderings existing along three directions of the three-sublattice system, but only along one
direction in the present three-layer superlattices. For the three-layer systems, there is no
energy spectrum in the Kx-direction, because of the finite structure along the x-direction of
the three-layer systems.

The energy spectra ω ∼ Ky of the three-layer superlattices and the three-layer systems
are shown in figure 2(b). The solid curves in figure 2(b) represent the energy spectra of the
superlattices, and the dashed curves are for those of the three-layer systems. The energy ω1 of
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(a)

(b)

Figure 2. The spin-wave spectrum, ω versus (a) Kx and (b) Ky , of the three-layer superlattices.
Here Kx = 3akx , Ky = aky , and a is the lattice constant. The parameters used during the
calculation are: kz = 0, S1 = S2 = S3 = 0.5, J1 = J2 = J3 = 1.0, and J12 = J23 = −1.0. For
the calculation of Kx , ky = 0 and J13 = 0.5. For the calculation of Ky , kx = 0 and J13 = 0.5 for
the superlattices, while J13 = 0.0 for the three-layer systems. In (b), the two spin-wave spectra ω2
and ω3 of the three-layer superlattices coincide with the two spin-wave spectra ω′

2 and ω′
3 of the

three-layer systems.
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the one optical branch with positive energy for the superlattices is higher than that, ω′
1, of the

corresponding one of the three-layer system. The acoustic branch ω3 of the former coincides
with that, ω′

3, of the latter, while another optical branchω2 (ω
′
2)with negative energy is also the

same for the two systems. As explained in [16,20,21], one may consider the magnon vacuum as
the ground state. As elementary excitations, the magnons excited out of the filled sea constitute
the branches with positive/negative energy [16, 20, 21]. The negative eigenfrequency for the
ferrimagnet might be related also to whether the spin wave propagates through clockwise or
anticlockwise relative to the spins [16]. The parameters used during the calculation are the
same for the two systems, except that J13 (J13 ≡ 0 in the case of the three-layer systems). This
implies that the difference in that optical branch is caused by the antiferromagnetism in the
two systems, because the increase of J13 actually increases the ferromagnetism in the systems.
The coincidence of the two branches of the two systems indicates that although J13 appears in
the solutions for these two branches, its effects may cancel each other out.

It is interesting to compare the energy spectra of the three-layer superlattices and the
three-layer systems with those of the corresponding three-sublattice bulk ferrimagnets. The
energy spectra in the kx-, ky-, kz-directions of the three-sublattice bulk ferrimagnets are same,
because the three crystallographic directions are equivalent. For the three-layer superlattices,
the energy spectrum in the kx-direction is lower than the corresponding one in the ferrimagnetic
three-sublattice system. As shown above, it differs from the energy spectra in the ky- and
kz-directions, due to the different crystallographic properties of the three-layer superlattices
in the three directions. In the case of the superlattices, the cyclic condition as well as
the translational invariance in the normal direction still hold, so the spin-wave spectra in
this direction can be described in the form of the plane waves. The superlattices have
a larger periodicity in the x-direction perpendicular to the y–z plane and therefore many
magnon branches exist in the folded Brillouin zone. Another reason for the difference of
the spin-wave spectra is the different spin alignments along the x-direction, where the spins
couple antiferromagnetically/ferromagnetically as in the bulk three-sublattice model, and in
the y–z plane, where all spins couple ferromagnetically. Because of the breakdown of the
cyclic condition (and the translational invariance) in the limited three-layer systems, no energy
spectrum can be calculated for the Kx-direction. Several characteristics of the spin-wave
spectra for limited systems, such as thin films and multilayers, were discussed in a recent
review article [22]. The discreteness of the spin-wave spectra originates from the finite number
of spins along the direction normal to the plane [22]. The gap between the sequence points
of the spin-wave spectra can be estimated by π/na (a is the lattice constant and n is the
number of spins along the direction perpendicular to the plane). The breaking down of the
translation symmetry makes the wavevector not a ‘good’ quantum number along the normal
direction [22]. In the limit case of many magnetic layers, one could still treat the wavevector
as a ‘pseudo-good’ quantum number and deal with the problem approximately using the bulk
theory. In the limit case of few layers, like the present three-layer systems, such a concept
and the corresponding approximation are no longer valid. The damping effects of spin waves
become more pronounced when the number of spins along the normal direction decreases and
therefore, according to the quantum uncertainty principle, it is difficult to determine precisely
the energies of high-lying (or even low-lying) spin-wave modes [22].

3.2. Low-temperature magnetization

Employing equations (2.6), (2.7) and the spectral theorem, one derives the magnetization per
site of each sublattice (the unit is taken to be gµB) as represented in equations (3.7), (3.8a),
and (3.9) of [16] for the three-sublattice bulk ferrimagnet (Si and Mi (i = a, b, c) in [16]
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Figure 3. Temperature dependence of the layer-sublattice magnetizations of the three-layer
superlattices with S1 = S2 = 0.5 and S3 = 1.0. The parameters used during the calculation
are: J1 = J2 = J3 = 1.0, J12 = J23 = −1.0, and J13 = 1.0 (the dotted curves), 0.5 (the solid
curves), 0.1 (the dash–dotted curves). The labels M1, M2, and M3 denote the magnetizations of
the 1-, 2-, and 3-layers, respectively.

are replaced by Si and Mi (i = 1, 2, 3) for the superlattices). Temperature (θ = kBT /J1)
dependences at low temperatures of the layer-sublattice magnetization of the superlattices for
different parameters J13 are shown in figure 3. For fixed values of the exchange coupling J13

and the spins Si (i = 1, 2, and 3), all the magnetizations M1, M2, and M3 for each layer
decrease with increasing temperature θ , owing to thermal motion. For fixed values of S1,
S2, and S3, the layer-sublattice magnetizations decrease and, correspondingly, the zero-point
quantum fluctuations increase with decreasing J13. Although the spin-wave theory is not
accurately valid in the high-temperature regime, one can estimate from the curves in figure 3
that the transition temperature will decrease with decreasing J13. These curves confirm that the
smaller the exchange coupling J13, the stronger the antiferromagnetism of the system. These
results coincide with ones for the three-sublattice bulk ferrimagnets studied previously [16].
However, the zero-point quantum fluctuation of the present superlattices is weaker than that of
the three-sublattice bulk ferrimagnets. This is due to the antiferromagnetic coupling existing
only along the x-direction in the former case, while the antiferromagnetic ordering exists in
three directions in the latter case. On the other hand, the conclusion that there is no magnetic
order in the three-layer system at finite temperatures (T �= 0) can be drawn, in good agreement
with the well-known results in the literature [23,24]. It is true that the thermal activity destroys
the ordering in the two-dimensional isotropic Heisenberg systems.
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3.3. Zero-temperature magnetization

The expressions for the layer-sublattice magnetization at zero temperature (T = 0 K) of the
three-layer superlattices and the three-layer systems are the same as those of equations (3.10)–
(3.12) in [16], except for the replacement of Si andMi0 (i = a, b, c) by Si andMi0 (i = 1, 2, 3).
M10, M20 and M30 are the zero-temperature layer-sublattice magnetization of the sublattices
of 1-layers, 2-layers, and 3-layers of the superlattices or the three-layer systems. In the
following, we shall study the effects of the interlayer exchange constants J12 (J23), J13 and the
intralayer exchange constants J3 (or J1), J2 on the properties of the three-layer superlattices
and the three-layer systems. For convenience of discussion, the spin configurations and the
interlayer exchange constants of the 1-, 2-, and 3-layers of the superlattices and the three-
layer systems are illustrated in figures 1(a) and (b), respectively. Although only the exchange
constants between the nearest neighbours have been included in Hamiltonian (2.1), the indirect
exchange couplings may contribute to the zero-point quantum fluctuations and also other
physical properties of the systems, due to the quantum correlations (see below for details).
For simplicity, we consider the contribution of the indirect exchange couplings only up to the
next-nearest neighbours in the following discussion.

3.3.1. Effects of the interlayer exchange constants. Figures 4(a) and (b) respectively show
the layer-sublattice magnetization at zero temperature as a function of absolute value of the
interlayer exchange constants J12 and J13 for the three-layer superlattices and the three-layer
systems. For the three-layer systems,M10 (denoted by 1 in figure 4) has a tendency to decrease
with increasing absolute value of the antiferromagnetic coupling J12, corresponding to the
enhancement of the zero-point quantum fluctuations in the 1-layer. There is a (very weakly
pronounced) maximum value ofM10 at about J12 = 0.1 for the three-layer superlattices. Such
a maximum becomes obvious for M20 (denoted by 2 in figure 4) as the change of J12 for
the two systems, which corresponds to the minimum of the zero-point quantum fluctuations
in the 2-layer. As shown in figure 1, the antiferromagnetic couplings J12 and J23 act on
the spin in the 2-layer for the two systems. The only difference is that the ferromagnetic
coupling J13 acts indirectly on the 2-layer of the superlattice. Since the crystal structure has
no inversion symmetry with respect to the sites of the 2-layer in the x-direction, the ratio
between the antiferromagnetic couplings J12 and J23 can vary over a certain range. The zero-
point quantum fluctuations of the 2-layer could be least when the ratio equals a critical value
at which the competition among the three exchange couplings is balanced. The zero-point
quantum fluctuations of the 2-layer increase gradually when the ratio departs from this value.
If one set |J12| = |J23|, the zero-point quantum fluctuations of the 2-layer would increase
monotonically with increasing absolute value of J12 (or J23), in agreement with figure 5 for
the three-sublattice bulk ferrimagnets. This indicates clearly that the maximum value of M20

as |J12| varies is related to the ratio of the antiferromagnetic couplings J12 and J23. The effects
of the antiferromagnetic couplings J12 and J23 of the 2-layer may partially cancel each other.
It is also seen from figure 4(a) that the increase of |J12| enhances the value ofM30 (denoted by
3 in figure 4), corresponding to the weak zero-point quantum fluctuations in the 3-layer. This
is attributed to the effect of J12 on the 3-layer being indirect, through the 1- and 2-layers. It is
understood that the antiferromagnetic exchange coupling J12 actually cancels out the partial
effect of the antiferromagnetic coupling J23 on the zero-point quantum fluctuations in the
3-layer. This supports the notion that the antiferromagnetic exchange couplings J12 and J23

compete with each other when they act on the layers. A similar discussion of the effect of J23

could be given, in view of the symmetry of the system. It can be concluded that the zero-point
quantum fluctuations and the spin magnetizations in each layer of both the three-layer systems
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and the three-layer superlattices depend sensitively on the competition among the exchange
couplings J12, J23, and J13.

It is interesting to compare the differences between the three-layer systems and the three-
layer superlattices. As shown in figure 4(a), the layer-sublattice magnetizations M20 and M30

at zero temperature of the three-layer systems are smaller than those of the superlattices,
regardless of the change of J12. This means that the zero-point quantum fluctuations in
the 2- and 3-layers of the three-layer systems are always stronger than the corresponding
ones in the three-layer superlattices. As shown in figures 1(a) and (b), the only difference
for the 2- or 3-layer is that the ferromagnetic coupling J13 acts indirectly on the 2-layer
of the superlattices. Thus this suggests that the ferromagnetic coupling J13 weakens the
zero-point quantum fluctuations indirectly, owing to the quantum correlations. However,
the layer-sublattice magnetization M10 at zero temperature of the former is less than that of
the latter only when the absolute value of J12 is bigger than a critical point. That is, only
when the effect of J12 is large enough can the zero-point quantum fluctuations in the 1-
layers of the three-layer systems be stronger than those in the 1-layers of the superlattices.
Why does the 1-layer have such special character? Why does such abnormal behaviour
occur? This can be understood as follows. The zero-point quantum fluctuations as well
as the spin magnetization M10 in the 1-layer, for both the three-layer systems and the three-
layer superlattices, depend sensitively on the competition among the exchange couplings J12,
J23, and J13. It can be seen from figure 1(a) that the antiferromagnetic coupling J12 and
the ferromagnetic coupling J13 act directly on the spin in the 1-layer of the superlattice.
Because of the quantum correlations, the antiferromagnetic coupling J23 could act indirectly
via the ferromagnetic coupling J13 on the spin in the 1-layer of the superlattice, especially
in the case of weak coupling J12. If the exchange coupling J12 vanishes, the 1- and 3-layers
are ferromagnetically coupled by J13, which may be treated as a whole as being coupled
antiferromagnetically with the 2-layer by J23. Thus the zero-point quantum fluctuations exist
in the 1-layer of the superlattices even when J12 = 0, owing to the correlation between the
1- and 2-layers, via the 3-layer. For the three-layer systems, as shown in figure 1(b), there is
only the antiferromagnetic coupling J12 acting directly on the spin in the 1-layer, while the
effect of the indirect antiferromagnetic coupling J23 can be neglected. In the limit case of
J12 = 0, such indirect action of J23 on the 1-layer ceases. When the absolute value of J12

is very small, the 1-layer in the case of the three-layer systems is equivalent to an isolated
ferromagnetic layer and, consequently, its zero-point quantum fluctuation almost vanishes. In
fact, when J12 = 0, there is no zero-point quantum fluctuation in the 1-layer of the three-layer
systems, because of its ferromagnetism. When the absolute value of J12 is above the critical
point, the effect of the antiferromagnetic coupling J12 upon the 1-layer is dominant, so the
zero-point quantum fluctuations in the 1-layer for the three-layer systems become large—
which originates mainly from the direct correlation between the 1- and 2-layers. For the
three-layer superlattices, when the absolute value of J12 is large, the correlation between
the 1- and 3-layers becomes weaker, compared with the correlation between the 1- and 2-
layers. It is known from figure 4(b) that the existence of J13 decreases the zero-point quantum
fluctuations of the three-layer superlattices and the increase of J13 enhances all the layer-
sublattice magnetizations. These effects result in stronger zero-point quantum fluctuations of
the 1-layer of the three-layer systems when the effect of the exchange coupling J12 becomes
strong. Therefore, the layer-sublattice magnetization M10 at zero temperature of the three-
layer systems is less than that of the three-layer superlattices when the absolute value of J12

is above a critical point.
From the discussion above, one can see that each exchange coupling affects all magnetic

properties of every sublattice in the system. With the quantum correlations (such as the
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(a)

(b)

Figure 4. The dependences on (a) |J12| and (b) J13 of the layer-sublattice magnetization M0 at
zero temperature for the three-layer superlattices. The parameters used during the calculation are:
S1 = S2 = 0.5, S3 = 1.0, J1 = J2 = J3 = 1.0, and J23 = −1.0. The labels 1, 2, and 3
correspond to the 1-, 2-, and 3-layers. In (a), the solid curves are for an example (J13 = 1.0)
of a three-layer superlattice, while the dashed curves are for the three-layer systems (J13 = 0.0).
For (b), J12 = −1.0. The three points on the ordinate (i.e., J13 = 0) of (b) correspond to the
layer-sublattice magnetizations at zero temperature for the three-layer systems.
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Figure 5. The dependence of the exchange constant |Jab| on the sublattice magnetization at zero
temperature in the three-sublattice bulk ferrimagnets as described in [16]. The parameters used
during the calculation are: Sa = Sb = 0.5, Sc = 1.0, Jbc = −1.0, Jca = 1.0. The labels a, b, and
c are for sublattices a, b, and c, respectively.

competition, cancellation, and transmission) of the exchange couplings, the system could
finally achieve a state with a balance of exchange couplings. Generally, the increase of the
ferromagnetic exchange coupling enhances the magnetization of each sublattice in the system,
but the role of the antiferromagnetic exchange coupling is very rich. In our previous work [16],
we did not study the effects of the quantum correlations in detail for the three-sublattice
bulk ferrimagnets. For a better comparison between the superlattices and the bulk materials,
we add here the results (in figure 5) for the dependence of the exchange constant |Jab| on
the sublattice magnetization at zero temperature in the three-sublattice bulk ferrimagnets (as
described in [16]). The trends of the variations in the two systems are similar. The sublattice
magnetization of the bulk ferrimagnets changes with the exchange constant more pronouncedly
than that in the superlattices. The maxima of magnetization, corresponding to the minima of
the zero-point quantum fluctuations, are more pronounced and appear for both sublattices a and
b in the bulk ferrimagnets. The values of the exchange constants corresponding to the maxima
of magnetization in the bulk ferrimagnets are larger than those in the superlattices. This shows
that the quantum competition in the bulk ferrimagnets is stronger than that in the superlattices,
because there are more ferromagnetic couplings in the latter. There is no quantum fluctuation
in the three-sublattice bulk ferromagnetic systems [16].

Figure 4(b) illustrates that, in the case of J12 = J23, the zero-point quantum fluctuations
in the present three-layer superlattices are always weaker than those in the three-layer systems,
owing to the introduction of the ferromagnetic coupling J13. If S3 were set to be same
as S1, the values of the layer-sublattice magnetizations M10 and M30 would also be the
same, due to the symmetry of the system. The difference between the spin values S1 and
S3 introduces some asymmetry into the system and thus changes the zero-point quantum
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fluctuations in the two layers. It is noticed, from figure 4(b), that the ratio between the
layer-sublattice magnetizations M10 and M30 is not same as that between the spin values
S1 and S3. As shown in figure 4, the layer-sublattice magnetization M20 is always lower
than the layer-sublattice magnetization M10 (M30) when S2 = S1 (S3). This is mainly
due to both the interlayer exchange couplings J12 and J23, which act directly on the 2-
layer, being antiferromagnetic, resulting in the strongest zero-point quantum fluctuations
in that layer. Although the effects of the two antiferromagnetic couplings on the 2-layer
may cancel partially as indicated above, the zero-point quantum fluctuations in the 2-layer
are the strongest. This implies that the negative effects of the ferromagnetic coupling
J13 on the zero-point quantum fluctuations of the 1- or 3-layer are stronger than those
due to the balance between the two antiferromagnetic couplings on the 2-layer. This
confirms that the asymmetry of the systems plays an important role in the zero-point
quantum fluctuations and correspondingly the layer-sublattice magnetizations of the layers,
and that the competition among the three exchange couplings controls the physical properties
of the systems. Comparing figure 4(b) with figure 5 of [16], one finds that the zero-
point quantum fluctuations in the three-layer superlattices and the three-layer systems are
weaker than those in the corresponding three-sublattice ferrimagnets, mainly because there is
more antiferromagnetic coupling in the bulk case. The change of the zero-point quantum
fluctuations with the ferromagnetic coupling J13 in the three-layer superlattices is less
pronounced than in the bulk, because the ferromagnetic coupling J13 exists only in the x-
direction of the three-layer superlattices. This means that the effects of the ferromagnetic
coupling J13 on the zero-point quantum fluctuations in the bulk are stronger than those in the
superlattices.

3.3.2. Effects of the intralayer exchange constants. It is evident from figures 6(a) and (b)
that the zero-temperature layer-sublattice magnetization of all the layers increases with the
increase of J2 and J3, indicating the enhancement of the ferromagnetism of the whole system.
Because the 1- and 3-layers are symmetric, the curves in figure 5(a) for the two layers coincide
with each other. The zero-temperature layer-sublattice magnetization of the 2-layer is lower
than that of the 1- and 3-layers, which is the same situation as for the corresponding three-
sublattice ferrimagnets [16]. In figure 6(b), compared to the changes in the 2- and 3-layers, the
variation of the zero-temperature layer-sublattice magnetization in the 1-layer is not very evi-
dent, because the increase of the ferromagnetic intralayer coupling J3 seriously decreases the
antiferromagnetism within the 3-layer itself, and also in the 2-layer via the antiferromagnetic
interlayer coupling J23. The weakening of the effect of the intralayer coupling J3 on the 1-layer
is mainly due to the containing effects of the ferromagnetic interlayer coupling J13 between the
1- and 3-layers. It is noted that the variations in figure 6(b) for the 1-layer for the superlattices
and the three-layer systems are mostly the same. From figure 6, the magnetization of the layers
in the three-layer superlattices is always higher than that of the corresponding layers in the
three-layer systems. This is attributed mainly to there being no ferromagnetic interlayer ex-
change coupling in the latter, but there is one ferromagnetic interlayer exchange coupling in the
former. For the bulk three-sublattice ferrimagnet [16], there is no intralayer coupling and the
three crystallographic directions are equivalent. As regards symmetry, there occurs symmetric
breakdown when one goes from the bulk three-sublattice materials to the three-lattice superlat-
tices and the three-layer systems. Of course, the magnetic properties of the systems depend not
only on the symmetry but also on the distributions of the exchange couplings of different types.

It has been concluded that all the differences between the magnetic properties of the three-
layer superlattices, the three-layer systems, and the three-sublattice bulk materials originate
from the differences in the exchange couplings in the three dimensions of the systems. The
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(a)

(b)

Figure 6. The dependences on (a) J2 and (b) J3 of the layer-sublattice magnetization M0 at
zero temperature for the three-layer superlattices (the solid curves, J13 = 1.0) and the three-
layer systems (the dashed curves, J13 = 0.0). The parameters used during the calculation are:
S1 = S2 = S3 = 0.5, J1 = 1.0, and J12 = J23 = −1.0. For (a), J3 = 1.0, while for (b), J2 = 1.0.
The labels 1, 2, and 3 correspond to the 1-, 2-, and 3-layers.

differences between the three-layer superlattices and the three-sublattice bulk ferrimagnets
are as follows. First, as a whole, the superlattice is a periodic layered structure, where only
the same ferromagnetic exchange couplings exist within each layer in our model. Therefore
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the magnetic properties of the sites within one layer in the superlattice are same. But the
corresponding three-sublattice bulk ferrimagnets do not possess this type of layered character,
and thus the magnetic properties of sites within one two-dimensional plane are not same.
This also results in the difference in spin-wave spectrum between the two systems. If there
was also antiferromagnetic exchange coupling in each layer in a superlattice, more extensive
differences would be found between the superlattices and the bulk. Second, from the magnetic
properties of the sublattices in one unit cell, because only ferromagnetic exchange couplings
exist within each layer in the three-layer superlattices, each layer may be treated as a whole with
a large spin number. Therefore the effects of the change of the exchange coupling parameters
on the quantum fluctuations in the superlattices are less pronounced than those in the bulk
ferrimagnets.

4. Summary

By using the linear spin-wave method, we have investigated the spin-wave spectrum and
the layer-sublattice magnetization for Heisenberg ferrimagnetic three-layer superlattices and
three-layer systems. We have discussed the effects of the interlayer exchange constants and the
intralayer exchange constants on the magnetic properties of the two systems, in comparison
with those of the corresponding three-sublattice ferrimagnet previously studied in [16].

The spin-wave spectra for the three-layer superlattices and the three-layer systems have
three branches—equal in number to the layers in a unit cell. One spectrum represents the
acoustic branch, the other two the optical branches. Three energy spectra along the Kx-
direction for the superlattices are lower than the corresponding ones of the ferrimagnetic three-
sublattice system [16], owing to the difference as regards the existence of antiferromagnetic
orderings in the various dimensions. The only difference between the spin-wave spectra along
the Ky-direction for the superlattice and those for the three-layer systems is for one optical
branch with positive energy, which is caused by the difference in the exchange coupling J13

between the two systems. The energy spectrum cannot be calculated for the Kx-direction
in the limited three-layer systems, because of the breakdown of the cyclic condition (and
the translation invariance) along the normal direction. Several characteristics, such as the
discreteness, the ‘bad’ quantum number, and the damping effects of the spin-wave spectra, for
the limited systems, originate from the finite spins along the normal direction, as discussed in
a recent review article [22].

For fixed values of the exchange couplingJ13 and the spinsSi (i = 1, 2, and 3), all the layer-
sublattice magnetizations of the superlattices decrease with increasing temperature θ , owing to
thermal motion. For fixed values of S1, S2, and S3, the layer-sublattice magnetizations decrease
and, correspondingly, the zero-point quantum fluctuations increase with decreasing J13. There
is no magnetic ordering at finite temperatures for the three-layer isotropic Heisenberg systems.

The zero-point quantum fluctuation for the present three-layer superlattices and three-layer
systems is weaker than that for the three-sublattice bulk ferrimagnet studied previously [16],
due to the difference in antiferromagnetic couplings in the three directions between these
systems. It has been found that the zero-temperature layer-sublattice magnetization for all
the layers increases with increasing intralayer exchange coupling J2 or J3 (J1), due to the
enhancement of the ferromagnetism of the whole system. The increase of the ferromagnetic
interlayer coupling J13 enhances (decreases) the zero-temperature layer-sublattice magnetiza-
tions (the zero-point quantum fluctuations) of all of the layers of the superlattices. However,
the zero-point quantum fluctuations and the layer-sublattice magnetizations in each layer, for
both the three-layer systems and the three-layer superlattices, depend sensitively on the com-
petition among the interlayer exchange couplings J12, J23, and J13. In general, the zero-point
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quantum fluctuations of the three-layer systems are stronger than those of the three-layer
superlattices—with the exception of a special case (forM10 of the 1-layer). It is found that the
quantum correlations, such as the competition, cancellation, and transmission of the effects of
the exchange couplings, are important for the magnetic properties of the systems. The indirect
effects of the exchange couplings evidently affect the magnetic properties of the non-nearest-
neighbouring spins, owing to the quantum correlations. Furthermore, the asymmetry of the
systems plays an important role in the zero-point quantum fluctuations and correspondingly
the layer-sublattice magnetizations of the layers.

All the differences between the magnetic properties of the three-layer superlattices, the
three-layer systems, and the three-sublattice bulk materials originate mainly from the difference
in exchange couplings in the three dimensions between the systems.
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